Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1151885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332870

RESUMO

Introduction: The single equivalent current dipole (sECD) is the standard clinical procedure for presurgical language mapping in epilepsy using magnetoencephalography (MEG). However, the sECD approach has not been widely used in clinical assessments, mainly because it requires subjective judgements in selecting several critical parameters. To address this limitation, we developed an automatic sECD algorithm (AsECDa) for language mapping. Methods: The localization accuracy of the AsECDa was evaluated using synthetic MEG data. Subsequently, the reliability and efficiency of AsECDa were compared to three other common source localization methods using MEG data recorded during two sessions of a receptive language task in 21 epilepsy patients. These methods include minimum norm estimation (MNE), dynamic statistical parametric mapping (dSPM), and dynamic imaging of coherent sources (DICS) beamformer. Results: For the synthetic single dipole MEG data with a typical signal-to-noise ratio, the average localization error of AsECDa was less than 2 mm for simulated superficial and deep dipoles. For the patient data, AsECDa showed better test-retest reliability (TRR) of the language laterality index (LI) than MNE, dSPM, and DICS beamformer. Specifically, the LI calculated with AsECDa revealed excellent TRR between the two MEG sessions across all patients (Cor = 0.80), while the LI for MNE, dSPM, DICS-event-related desynchronization (ERD) in the alpha band, and DICS-ERD in the low beta band ranged lower (Cor = 0.71, 0.64, 0.54, and 0.48, respectively). Furthermore, AsECDa identified 38% of patients with atypical language lateralization (i.e., right lateralization or bilateral), compared to 73%, 68%, 55%, and 50% identified by DICS-ERD in the low beta band, DICS-ERD in the alpha band, MNE, and dSPM, respectively. Compared to other methods, AsECDa's results were more consistent with previous studies that reported atypical language lateralization in 20-30% of epilepsy patients. Discussion: Our study suggests that AsECDa is a promising approach for presurgical language mapping, and its fully automated nature makes it easy to implement and reliable for clinical evaluations.

2.
Hum Brain Mapp ; 43(4): 1342-1357, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35019189

RESUMO

Prior studies have used graph analysis of resting-state magnetoencephalography (MEG) to characterize abnormal brain networks in neurological disorders. However, a present challenge for researchers is the lack of guidance on which network construction strategies to employ. The reproducibility of graph measures is important for their use as clinical biomarkers. Furthermore, global graph measures should ideally not depend on whether the analysis was performed in the sensor or source space. Therefore, MEG data of the 89 healthy subjects of the Human Connectome Project were used to investigate test-retest reliability and sensor versus source association of global graph measures. Atlas-based beamforming was used for source reconstruction, and functional connectivity (FC) was estimated for both sensor and source signals in six frequency bands using the debiased weighted phase lag index (dwPLI), amplitude envelope correlation (AEC), and leakage-corrected AEC. Reliability was examined over multiple network density levels achieved with proportional weight and orthogonal minimum spanning tree thresholding. At a 100% density, graph measures for most FC metrics and frequency bands had fair to excellent reliability and significant sensor versus source association. The greatest reliability and sensor versus source association was obtained when using amplitude metrics. Reliability was similar between sensor and source spaces when using amplitude metrics but greater for the source than the sensor space in higher frequency bands when using the dwPLI. These results suggest that graph measures are useful biomarkers, particularly for investigating functional networks based on amplitude synchrony.


Assuntos
Conectoma/normas , Magnetoencefalografia/normas , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Processamento de Sinais Assistido por Computador , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes
3.
Hum Brain Mapp ; 41(11): 2964-2979, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400923

RESUMO

Focal epilepsy originates within networks in one hemisphere. However, previous studies have investigated network topologies for the entire brain. In this study, magnetoencephalography (MEG) was used to investigate functional intra-hemispheric networks of healthy controls (HCs) and patients with left- or right-hemispheric temporal lobe or temporal plus extra-temporal lobe epilepsy. 22 HCs, 25 left patients (LPs), and 16 right patients (RPs) were enrolled. The debiased weighted phase lag index was used to calculate functional connectivity between 246 brain regions in six frequency bands. Global efficiency, characteristic path length, and transitivity were computed for left and right intra-hemispheric networks. The right global graph measures (GGMs) in the theta band were significantly different (p < .005) between RPs and both LPs and HCs. Right and left GGMs in higher frequency bands were significantly different (p < .05) between HCs and the patients. Right GGMs were used as input features of a Naïve-Bayes classifier to classify LPs and RPs (78.0% accuracy) and all three groups (75.5% accuracy). The complete theta band brain networks were compared between LPs and RPs with network-based statistics (NBS) and with the clustering coefficient (CC), nodal efficiency (NE), betweenness centrality (BC), and eigenvector centrality (EVC). NBS identified a subnetwork primarily composed of right intra-hemispheric connections. Significantly different (p < .05) nodes were primarily in the right hemisphere for the CC and NE and primarily in the left hemisphere for the BC and EVC. These results indicate that intra-hemispheric MEG networks may be incorporated in the diagnosis and lateralization of focal epilepsy.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
4.
Neuroimage Clin ; 26: 102205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32070812

RESUMO

There is an unmet need to develop robust predictive algorithms to preoperatively identify pediatric epilepsy patients who will respond to vagus nerve stimulation (VNS). Given the similarity in the neural circuitry between vagus and median nerve afferent projections to the primary somatosensory cortex, the current study hypothesized that median nerve somatosensory evoked field(s) (SEFs) could be used to predict seizure response to VNS. Retrospective data from forty-eight pediatric patients who underwent VNS at two different institutions were used in this study. Thirty-six patients ("Discovery Cohort") underwent preoperative electrical median nerve stimulation during magnetoencephalography (MEG) recordings and 12 patients ("Validation Cohort") underwent preoperative pneumatic stimulation during MEG. SEFs and their spatial deviation, waveform amplitude and latency, and event-related connectivity were calculated for all patients. A support vector machine (SVM) classifier was trained on the Discovery Cohort to differentiate responders from non-responders based on these input features and tested on the Validation Cohort by comparing the model-predicted response to VNS to the known response. We found that responders to VNS had significantly more widespread SEF localization and greater functional connectivity within limbic and sensorimotor networks in response to median nerve stimulation. No difference in SEF amplitude or latencies was observed between the two cohorts. The SVM classifier demonstrated 88.9% accuracy (0.93 area under the receiver operator characteristics curve) on cross-validation, which decreased to 67% in the Validation cohort. By leveraging overlapping neural circuitry, we found that median nerve SEF characteristics and functional connectivity could identify responders to VNS.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Potenciais Somatossensoriais Evocados/fisiologia , Máquina de Vetores de Suporte , Estimulação do Nervo Vago/métodos , Adolescente , Vias Aferentes/fisiopatologia , Criança , Conectoma/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Nervo Mediano/fisiologia , Estudos Retrospectivos , Córtex Somatossensorial/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...